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A few well-defined parameters may be iteratively refined by a reduced Ncwton- 
Kaphson process based on the generalized inverse. The method has been used in a 
gravitational n-body integration to control the usual ten first integrals of motion. The 
discussion is based on that example to show how the details may be carried through. 

I. INTRODUCTI~K 

Multivariate Newton-Raphson processes are used in many computations to 
find a kind of “self-consistent” solution to a set of difference equations (see, for 
example, [I, 21). Usually, the number of variables to be refined is equal to the 
number of conditions available; so the matrix involved is nonsingular and may be 
inverted without difficulty. It may happen, however, that the number of conditions 
is less than the number of variables in a situation for which an iterative refinement 
may be useful. A simple extension of the Newton-Raphson method to this case is 
described in this note. As frequently occurs in a computational context, the 
working-out of details is much more of a problem than the general theory and 
may, indeed, determine whether a method is practical. For that reason, this note 
is principally devoted to the application of the method to a practical calculation- 
the gravitational n-body calculation. The lines along which a general formulation 
can be constructed, as well as other situations to which the method apply, should 
be evident from this application. 

The gravitational n-body calculation [3-91 is an attempt to integrate the 
Newtonian equations of motion for point particles with inverse-square-law forces. 
The forces are computed between each pair of particles, and the entire calculation 
is treated as precisely as computational methods allow. The process is numerically 
quite unstable (even though the first 10 integrals can be adequately computed) for 
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physical reasons that are reflected in the structure of the equations [lo]. The 
improvement in control of the first ten integrals described here has little elTect on 
the numerical stability (Section 3). 

The evolution of an n-body system may be geometrically visualized as the motion 
of a representative point in the &-dimensional r space (phase space), which is a 
linear vector space (it is the system space of the differential equations). The integrals 
of motion define a set of intersecting hypersurfaces with the trajectory contained 
in the intersection. The (6n-lO)-dimensional hypersurface in which the ten frst 
integrals are exactly conserved will be called the “integral hypersurface”. 

As the computed system evolves, the point representing the computed system 
drifts away from the point representing a real physical system (or an exactly 
integrated set of equations); the “difference vector” has components lying in the 
integral hypersurface and others orthogonal to it. The components orthogonal to 
the integral hypersurface are responsible for the drifts in the values of the first 
integrals that are observed in every real calculation. The partial refinement des- 
cribed in this note is a process whereby the point representing the computed system 
is moved toward the integral hypersurface. The components lying in the integrai 
hypersurface cannot be determined from the integrals; accordingly, the point is 
moved toward the hypersurface along the normals to the hypersurface (gradients 
of the integrals). This merely provides an unambiguous rule for moving the point; 
the only justification that can be offered is that the length of the displacement 
vector is minimal in a least-squares sense (but not the usual least-squares problem; 
this problem is heavily underdetermined). Displacements having these properties 
may be computed by using the generalized inverse. This method differs from other 
gradient methods in that it deals with an underdetermined problem. 

There is no guarantee that the solutions so found are any better than any that 
might bc constructed by some other recipe. In fact, the method was developed to 
assist in the study of the peculiarities of numerical solutions to gravitational n-body 
systems, in particular, to show that the numerical instability persists even if the 
first integrals are (nearly) exactly conserved. The discussion gets rather philc- 
sophical and is postponed to another paper. 

The notion of refinements at each integration step is not unusual; in any pre- 
dictor-corrector scheme, the correction is a shift of the representative point accor- 
ding to some rule. The rule chosen here is that the point shall be shifted to conserve 
the first integrals. Although the resulting system is expected to be stable, it could 
turn out to be unstable. 

The conditions for the method to apply are simply that the phase space be 
locally Euclidean, that the computed system point be close enough to the integrai 
hypersurface that the space between is well-behaved.The notion of a normal to the 
surface must be well defined. In spaces of many dimensions, the topology of the 
integral hypersurface can become very complicated, so it is not a priori obvious 
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that this kind of scheme can be made to work in practice. But it has been made to 
work; so the pathological special cases that might be imagined do not seem to 
present practical difficulties. 

11. COMPUTATIONAL DIXAILS 

The first ten integrals consist of the position and velocity of the centroid (3 each), 
the total angular momentum (3 components), and the total energy. To the first 
order, the error in each of these ten integrals is a linear combination of the com- 
ponents of a displacement in the phase space. The matrix of the linear combinations 
has 10 rows and 6n columns; its elements are the partial derivatives of each of the 
integrals in turn by the components of the particle positions and momenta. These 
latter form a basis for the phase space. The rows of the matrix are the gradients 
of the integrals. If the generalized inverse of this matrix is found, the displacements 
of particle positions and velocities computed from it will be made up of linear 
combinations of the gradients of the integrals-the correcting displacement must 
lie in the subspace spanned by the gradients. This is the feature that assures the 
minimal displacement in a least-squares sense. 

The gradients are made up of quantities that are readily available in the calcula- 
tion. It is a simple matter requiring no extra computation to construct this matrix. 
Let xl”‘, aial and pj”’ represent the i-component of the position, velocity, and 
momentum of particle number a ((Y .L 1, 2, 3,..., n; i = 1, 2, 3). The meanings of 
the other symbols are conventional. Then the first integrals and their gradients are 
given by: 
Centroid in configuration space: 

n 
SXi 

ax!s,= m(a)aijS,E = m(E)8 ..a P, aa 9 
3 

ax. 0 = 0. 
api!) (3) 

Total linear momentum: 

(4) 

(5) 

ap. --L = S.&f . apv) 9 
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Total angular momentum: 

Here, Eijk is the (3-dimensional) totally antisymmetric symbol, and summation 
over repeated i: j, k, J indices is implied, but not over repeated LY, ,8 indices. These 
expressions obscure the essential simplicity of the construction. In detail, the 
matrix of gradients (for equal masses) is 

x(l) x(l) . . . y (I) (,I) p . . . p p . . . p;’ p;’ . . . &) pu . . . )p p I.. 
z 

1 1 . ..o 0 . ..o 0 . ..o 0 . ..() 0 . ..o 0 .,. 
_.. 
. . . 
. . . 
. . 
. . . 
. . . 
. . . 
. . 
. . 

(13) 

The rows of this matrix are linearly independent. This can be shown directly by 
seeking a linear combination of the rows that is identically zero for coefficients 
not all zero. When this is done, the six coefficients that multiply (grad Xi) and 
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(grad Pi) naturally split off and must each be zero if Xi and Pi are zero. Since the 
dynamics always permits this shift of origin (in the absence of external forces), 
these six coefficients are all zero. The system of equations remains: 

cij,.Jjp;) + dFi’*’ = 0, (14) 

eijkJjxf) + duLm) = 0. (15) 

Here d is the coefficient multiplying (grad E) and Ji are three coefficients that 
multiply the terms of (grad Lj) in the linear combination. If the first of these 
equations is multiplied by xl”’ and the second by pf’ (summation on i implied, but 
not on OI), the indices may be relabeled to give 

which cannot be satisfied for all xr’, pi*, ( ) Fi(a’ unless d = 0. It is interesting to 
notice that the square bracket of Eq. (16), if summed over particles (x), is the 
expression that appears in the Lagrange-Jacobi identities [l I]. The second term 
is twice the total kinetic energy and the first can be transformed to give the total 
potential energy. The Lagrange-Jacobi identities give the sum over particles as 
-i d21idt2 (I is the “total moment of inertia” or, more properly, the trace of the 
inertia tensor), a quantity that carmot always be zero. The “virial theorem” 
merely asserts that the time-average is zero, not that the quantity is instantaneously 
zero at all times. The requirement of Eq. (16), with no sum over particles, is even 
more stringent. 

With d = 0, Eqs. (14) and (15) contain only Jj . Finding three nonzero coeffi- 
cients Jj is the same as finding a single 3-vector that is parallel to each pt’ and xf’. 
This cannot be done even in a two-dimensional system. 

Thus, the rows of the matrix of gradients are linearly independent. The im- 
portance of this result, computationally, is twofold: (1) the amount of computation 
cannot be reduced by solving a smaller system, and (2) each of the first integrals 
can be forced to zero, rather than a restricted set determined by some linear 
combination. Experimentally, this second statement is confirmed: the refinement 
process does indeed bring each of the components of angular momentum and 
the total energy separately to zero. One’s prejudices, carried over from quantum 
mechanics and from the more thorough treatments of classical mechanics, might 
have led him to expect that L, , L, , and L, might not be linearly independent 
while L, , L2 might be. The demonstration of linear independence settles that issue 
as well. 

As a practical matter, the six integrals of the centroid position and velocity 
present no problem numerically, particularly if both centroids are on the origin. 
They need not be included in the iterative refinement. This leaves only the three 
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total angular momentum components and the total energy. For a 32-particle 
system, the resulting matrix is 4 x 192. Computation of generalized inverses for 
such strongly nonsquare matrices is quite fast. 

The refinement entails computation of a “vector” whose components are the 
errors in the integrals, followed by the computation of the generalized inverse to 
the matrix of gradients, computation of the correction in phase space, and finally: 
the correction of the phase point. Since the argument is based on the assumption 
of first-order deviations, iteration requires recomputation of the forces and ether 
elements of the matrix of gradients to allow nonlinear effects to enter. It is evident 
that the n-body calculation must be designed to mesh with the partial iterative 
refinement-many possible strategies for handling n-body calculations wou!d fit 
awkwardly if at all with an iterative refinement procedure. 

111. EXPIXRIENCE WITH THE PROCEDURE 

It is convenient to set an acceptance tolerance and a failure exit if the required 
tolerance cannot be attained in some given number of tries. In the case of the 
32-body system, a sum of squares of the errors in the four integral components of 
10-l” and a failure exit at six tries was a workable combination. In about 30 
different calculations of several thousand refinements each, one calculation 
reached the failure exit during an extremely close encounter. The failure happened 
so infrequently that there seemed to be no point in taking special precautions for 
this case. 

Convergence to this tolerance (for a system with E = -250) required 2 
iterations normally, occasionally needing 3 or 4. The energy was usually the most 
difficult to control--the error in the energy was usually significantly larger than 
the errors in angular momentum components. Relative errors are not meaningful 
since most calculations were run with all total angular momentum components 
being zero. 

The calculation was designed with the integrations for all particles being done at 
the same time, unlike the calculations of Aarseth and Wielen [6-91. Variable time 
steps were used, and the iterative refinement procedure was called each 16 normal 
integration steps. No special pains were taken to produce a fast-running program, 
but tolerance requirements as stringent as this are usable only with multiple 
precision or with a reasonably long word. It is not meaningful to quote a figure for 
the comparative computing speeds of calculations run with and without the partial 
refinements because, as mentioned earlier, the iterative refinement procedure can 
effectively mesh only with a program designed with that goal in mind. Partial 
refinements would normally be used only where the expected computational 
advantages are great enough to justify the extra cost. 
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The iterative refinement procedure made little change in the gravitational n-body 
calculation, by the measure of the rate at which representative points of two 
computed systems separate in phase space. The details of studies using the partial 
iterative refinements as a diagnostic tool with the gravitational n-body problem 
are given in a companion paper [lo]. That paper goes into the reasons why partial 
refinements are not sufficient to stabilize the gravitational n-body calculation. 

One gets the impression that calculations run with the control on first integrals 
have fewer close encounters than those without it. It is only an impression, and 
would be very difficult to establish convincingly. The principal difficulty is that 
two calculations started from identical initial conditions, one with and one without 
the iterative refinement, very soon become distinct calculations-their trajectories 
are quite different. One trajectory may quite properly contain more close encounters 
than the other. 

The partial refinement procedure should improve other calculations with which 
it might be used. Its failure to stabilize the gravitational n-body calculation follows 
from the peculiarities of that calculation already alluded to, and from the severity 
of the test criterion. Clearly, once the first integrals are controlled, they are no 
longer useful as indicators of the quality of a calculation. 

Quite independently of the work described here, P. Nacozy [12] has applied a 
similar method of partial refinements to the first integrals in a gravitational n-body 
calculation. Nacozy’s interpretation of the utility of partial relinements differs 
from that presented here, evidently because of very different measures of their 
effectiveness. 
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